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Abstract: Deep neural networks (DNN) are widely used in image recognition, image classification, and other fields. However, as the model 
size increases, the DNN hardware accelerators face the challenge of higher area overhead and energy consumption. In recent years, stochastic 
computing (SC) has been considered a way to realize deep neural networks and reduce hardware consumption. A probabilistic compensation 
algorithm is proposed to solve the accuracy problem of stochastic calculation, and a fully parallel neural network accelerator based on a deter⁃
ministic method is designed. The software simulation results show that the accuracy of the probability compensation algorithm on the CIFAR-
10 data set is 95.32%, which is 14.98% higher than that of the traditional SC algorithm. The accuracy of the deterministic algorithm on the 
CIFAR-10 dataset is 95.06%, which is 14.72% higher than that of the traditional SC algorithm. The results of Very Large Scale Integration 
Circuit (VLSI) hardware tests show that the normalized energy efficiency of the fully parallel neural network accelerator based on the deter⁃
ministic method is improved by 31% compared with the circuit based on binary computing.
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1 Introduction

Today, with the rapid development of high-speed data 
services such as the Internet and the Internet of 
Things, a large number of data interactions bring con⁃
venience to people’s lives and at the same time, the 

constantly increasing data volume brings challenges to the effi⁃
ciency of data processing algorithms and hardware perfor⁃
mance. Although the integrated circuit industry follows 
Moore’s Law, chip integration is getting higher and higher 
with the continuous reduction of process nodes, and chip per⁃
formance also improves. However, as the traditional comple⁃
mentary metal oxide semiconductor (CMOS) process size is 
getting closer to the physical limit, new structures, new materi⁃
als, and new lithography techniques cannot stop the argument 
that “Moore’s Law is dead”. The continuous reduction of chip 
feature size leads to many difficult problems in chip manufac⁃
turing, such as poor robustness and heat dissipation. These 
problems cannot be solved by integrating more transistors on 
the chip, at this time, it is necessary to find a new method to 
reduce the complexity of signal processing algorithms and cir⁃

cuit power consumption under the existing process conditions. 
At this time, stochastic computing (SC) comes into view again.

Traditional stochastic computing refers to a computational 
paradigm that employs randomness as a fundamental resource 
for information processing. The data are represented and ma⁃
nipulated probabilistically, often using bitstreams or random 
sequences to encode values. The weighted representation of 
stochastic computing is different from that of binary. Stochas⁃
tic computing converts binary input into a probabilistic bit 
stream, also known as a stochastic sequence, according to a 
certain data format, and re-designs the corresponding basic 
unit circuit according to the data format, so that the original 
complex operation logic can be used to achieve the same pur⁃
pose with simple logic, that is, the algorithm realized by sto⁃
chastic computing has lower computational complexity. It can 
reduce the hardware resource cost required to implement the 
operation logic. Stochastic computing focuses on the number 
of “1” in the stochastic sequence, and does not pay much at⁃
tention to the specific position of “1” and “0” in the gener⁃
ated stochastic sequence. Although the chip manufacturing 
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process such as technology and soft error may bring about the 
phenomenon of a few bit errors, it will not have a great impact 
on the final result of stochastic computing. This is the high 
fault tolerance characteristic of stochastic computing. Since 
the performance of stochastic computing circuits is essentially 
anti-aging and is not affected by circuit topology and probabi⁃
listic coding, stochastic computing can provide a more relaxed 
circuit design space, which provides hope for the future appli⁃
cation of emerging nanodevices. Stochastic computing not 
only reduces the complexity of circuit design but also reduces 
the requirement for device reliability. This suggests that sto⁃
chastic computing is an alternative to the inherent reliability 
enhancement design of advanced technology nodes[1].

In 2021, LI et al. optimized stochastic sequence generation, 
used separate weights and activation memory to load their re⁃
spective stochastic sequence generator buffers, spread the gen⁃
eration cost of activation flow through cross-row broadcast of 
activation values, and corrected correlation through training, 
thus bridging the accuracy gap between stochastic computing 
and fixed-point neural networks[2]. In 2022, HU et al. [3] pro⁃
posed a complete stochastic computing architecture and real⁃
ized the flow sheet, which maximized fault tolerance and ro⁃
bustness, achieved an energy efficiency of 198.9 TOPS/W and 
an area efficiency of 2 630 GOPS/mm2, and reduced the accu⁃
racy loss by 70%. Ref. [3] shows the great potential of low-cost 
IoT neural network processors. In 2022, CHEN et al. [4] pro⁃
posed a low-complexity bitstream expansion method to sup⁃
press the computation errors of stochastic computing and pro⁃
posed a partition scheme with allocation decision to design hy⁃
brid stochastic binary computing multiplicative and additive 
units to improve the processing speed of bitstream with mini⁃
mal overhead. In 2023, HU et al.[5] proposed a hybrid stochas⁃
tic multiplier combining unipolar coding and bipolar coding to 
achieve a balance between high precision and low hardware 
consumption and proposed a stochastic accumulator parallel 
counter to attain high precision stochastic bit stream to binary 
conversion with low hardware consumption. At the same time, 
the finite state machine was used to realize the high-precision 
Relu function circuit design. In 2023, FRASSER et al.[6] used 
correlation and de-correlation to compute, and for the first 
time embedded a fully parallel convolutional neural network 
based on stochastic computing into a single FPGA chip, 
achieving better performance results than traditional binary 
logic and other stochastic computing implementations. In 
2023, XIE et al.[7] proposed a new stochastic computing accel⁃
erator for convolutional neural networks, which utilized the 
nuclear parallelism of convolutional layers to reduce hardware 
area and energy consumption effectively.

However, the accuracy of traditional stochastic computing 
is not enough, which makes the final result worse. To improve 
the calculation accuracy, this paper proposes a probability 
compensation algorithm based on the relative error distribu⁃
tion of the traditional stochastic computing multiplier, which 

maps the data to the region with a small relative error through 
the function and then performs data inverse processing. The 
accuracy rate of the accelerator on the CIFAR-10 data set is 
95.32%. In addition, a fully parallel neural network accelera⁃
tor based on the deterministic method is designed, and the ac⁃
curacy of the accelerator on the CIFAR-10 dataset is 95.06%. 
This design adopts TSMC 28 nm CMOS technology, and the 
energy efficiency is 1.371 TOPS/W.

The rest of the paper is organized as follows. Section 2 intro⁃
duces the basic concepts and a brief review of SC. The third 
section gives the architecture design of the hardware accelera⁃
tor. In Section 4, the experimental results of the probabilistic 
compensation algorithm and the accuracy, hardware evalua⁃
tion, and comparison of all parallel neural network accelera⁃
tors based on the deterministic method on multiple data sets 
are introduced. Finally, Section 5 draws the conclusion.
2 Background

2.1 Stochastic Computing
Different from the binary weight representation method, sto⁃

chastic computing is represented by converting the binary in⁃
put into a finite-length stochastic bit stream, that is, the prob⁃
ability of the occurrence of “1” in the stochastic bit stream is 
represented by the corresponding binary value, which is the 
most common unipolar data format. For stochastic computing, 
each “1” in a stochastic bit stream has an equal weight. For a 
string of n-bit stochastic bit streams represented by the unipo⁃
lar type, the corresponding binary value x is equal to the prob⁃
ability Px of “1” appearing in the stochastic bit stream, so the 
representation range of unipolar type is [0, 1], and the data 
represented by each “1” is 1/N, that is, the accuracy of data 
represented by the unipolar type is 1/N. The research process 
of stochastic computing is summarized. The structure of the 
stochastic computing paradigm in Fig. 1 is obtained.

The structure of the stochastic computing paradigm is com⁃
posed of three main parts. The first is the interface part of bi⁃
nary to a stochastic number, which is composed of a random 
number generator and a comparator. In the traditional struc⁃
ture, the random number generator uses the linear feedback 
shift register (LFSR) structure to generate random numbers. 
The second is the stochastic computing operation unit, which 
is represented by different basic gate units according to differ⁃
ent data formats of stochastic computing. The last part is the 
stochastic number to the binary interface, which is generally 
composed of counters under the serial structure.

For stochastic sequences generated by unipolar data for⁃
mats, multiplication is often performed with gates. An ex⁃
ample of multiplication unit input and output for a unipolar 
data format is shown in Fig. 2.

The traditional stochastic computing multiplier is composed 
of a stochastic sequence generator, two inputs, a gate and a 
counter, and its structure is simple and clear. For the design 
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of this paper, int8 data are selected as the data input. Consid⁃
ering the data contain one symbol bit, int8 data can be split 
into symbol bits and numerical bits for multiplication. There⁃
fore, the combination of seven-bit LFSR and seven-bit com⁃
parator is selected as the stochastic sequence generator. The 
stochastic sequence is generated by comparing the numerical 
bits of data input with the corresponding output values of 
LFSR. The counter is completed by the additional operation 
on the software side. When the stochastic sequence corre⁃
sponding to the two inputs is 1, the resulting counter is in⁃
creased by 1. For the seed selection of the random number 
generator, as long as the seeds are not the same, there is no 
fundamental impact on the stochastic computing multiplier. 
The current design does not consider the specific impact of 
other seed selections.
3 Accelerator Design

3.1 Probability Compensation Algorithm
The implementation of the stochastic multiplier is very 

simple, requiring only two inputs and a gate to implement 
binary multiplication logic, so it is often used to illustrate 
the simplicity of the logical unit of stochastic computing. 
However, simple logic often comes with certain disadvan⁃
tages. Different from the binary accurate calculation, due to 
the randomness of stochastic computing, the calculation re⁃
sults also have stochastic properties, and the error of the 
calculation results is not uniform, resulting in poor perfor⁃

mance in the performance test of the 
convolutional neural network built by 
the traditional stochastic computing 
multiplier, which is an important prob⁃
lem to be solved in this paper.
3.1.1 Error Analysis of Stochastic Compu⁃

tational Multiplier
The software side uses the pyLFSR li⁃

brary of Python to make the software 
side model closer to the hardware model. 
A random int8 data input error test was 
carried out for the completed traditional 
stochastic computing multiplier model. 
The input data was in the form of fixed-
point numbers. The errors between the 
calculated results and theoretical results 
were measured by mean relative error 

(MRE), mean error (ME), and maximum relative error 
(ERR_max), and the corresponding calculation formula was 
shown as follows.

MRE = 1
N ⋅ ∑

i = 1

N |

|
|
||
||

|
|
||
| xi - x_real i

x_real i  , (1)

ME = 1
N ⋅ ∑

i = 1

N xi - x_real i

x_real i  , (2)

ERR_max = max ( )xi - x_real i

x_real i , (3)
where N is the total number of test data, xi is the calculation 
result of the stochastic computing multiplier, and x_reali is the 
theoretical calculation result.

Random number generator seeds are selected as [1, 1, 0, 0, 
1, 1, 1] and [1, 0, 1, 1, 1], and fixed-point random data input 
is generated by the randint function in the Python library. The 
results of the 10 000 random samples simulation show that 
MRE and ME of a traditional stochastic multiplier are 15.47% 
and 10.23%, and ERR_max is 127. To better understand the 
distribution of relative errors and make appropriate adjust⁃
ments, the input data are divided into 10 intervals according 
to the seven-bit numerical bits on average. There are 100 two-
dimensional intervals corresponding to the two inputs in pairs. 
Each interval generates 1 000 random fixed points within the 
interval range, and the simulation of relative error distribution 
is carried out. The resulting relative error distribution is 
shown in Fig. 3. To facilitate observation, the squares with 
small relative errors in the thermal map are filled with a light 
color system, and the squares with large relative errors in the 
thermal map are filled with a dark color system. The darker 
the color is, the larger the relative errors are. The color and 

CMP: comparator
CNT: counter

RNG: random number generator
SNG: stochastic number generator

▲Figure 1. Stochastic computing paradigm

▲Figure 2. A stochastic computing multiplier unit in a unipolar data format

SNG
RNG x

N N

CMP

Stochastic number

B2S interface
B2S unit

B2S unit

B2S unit

B2S unit

︙

S2B unit

S2B unit

S2B unit

S2B unit

︙

S2B interface

Stochastic computing unit

Stochastic number

CNT

Binary number

P ( A = 1) = 1
2

P ( B = 1) = 1
2

A=1100_0101

B=0110_1100 P (Q = 1) = 1
4

Q=0100_0100

11



ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

WU Jingguo, ZHU Jingwei, XIONG Xiankui, YAO Haidong, WANG Chengchen, CHEN Yun 

Special Topic   Research on High-Precision Stochastic Computing VLSI Structures for Deep Neural Network Accelerators

corresponding value are given in the legend on the right of the 
figure, and the relative error value of the square is marked in 
each square. By observing the thermal distribution diagram of 
relative error, it is found that the dark grid is concentrated in 
the upper left corner of the thermal map, that is, when the two 
input data are both small, the relative error of the calculated 
result is large, which is consistent with the previous ERRmax. 
In heat maps, the relative error is mostly less than 4%, and 
the further you go to the left, the greater the relative error is. 
Theoretically speaking, since x_reali is in the denominator of 
the relative error formula, when the absolute error between 
x_reali and xi is at the same magnitude, the smaller x_reali is, 
the greater the relative error will be. The relative error distri⁃
bution of the thermal map is in agreement with the theoretical 
analysis results.
3.1.2 Research on Compensation Mechanism of Traditional 

Stochastic Computing Multiplier
To eliminate the serious influence of the local relative error 

on the whole relative error shown in the thermal map, the com⁃
pensation mechanism of the stochastic computing multiplier is 
studied. Considering that the position with the greatest rela⁃
tive error appears on the far left and top, and the worst case is 
concentrated in the upper left corner, that is, the relative error 
of the calculation result is larger when one input datum is 
small, and the relative error of the calculation result is large 
when the two input data are small at the same time, which ex⁃
plores a situation where the data are mapped from the upper 

left corner to the lower right corner by using accurate interme⁃
diate calculation. After the calculation, the accuracy compen⁃
sation is carried out by reflecting in the upper left corner. The 
compensation method is called probability compensation, 
which means increasing the probability of the data interval 
with a small relative error in the calculation to improve the 
overall data accuracy. Fig. 4 is the flow chart of the probabil⁃
ity compensation algorithm.

In Fig. 4, the probability compensation algorithm adds two 
steps of data preprocessing and data inverse processing based 
on traditional stochastic computing. After data preprocessing, 
binary input enters the comparator together with the random 
numbers generated by the random number generator LFSR for 
comparison. After stochastic computing and multiplication 
unit, the preprocessed stochastic sequence is converted into 
binary for data inverse processing. Utilizing data mapping, the 
probability compensation algorithm converts the data involved 
in the operation to the data region with high accuracy, to com⁃
pensate for the accuracy of the traditional stochastic comput⁃
ing and multiplication algorithm.

For probability compensation, a function f(x) should be 
found to satisfy certain conditions, and the data should be pre⁃
processed by function mapping. To ensure fairness in mapping 
the two input data, the same function f(x) is used for mapping. 
The data representation range of unipolar stochastic comput⁃
ing is [0, 1], that is, the value range of the two input data is [0, 
1]. Since the input data with large relative error is concen⁃
trated in the data interval close to 0, the function f(x) should 

▲Figure 3. Heatmap of the relative computational error distribution of the traditional stochastic computing multiplier
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map the data close to 0 to the data interval close to 1. The in⁃
put data with small relative error should remain unchanged 
or change in a small amplitude as much as possible, so it is 
necessary to find a function, of which the domain and range 
are both [0, 1]. At the same time, since the inverse function 
of f(x) needs to be used for data inverse processing, the func⁃
tion f(x) must meet the requirement of the existence of an in⁃
verse function, and the influence of two input data mappings 
must be offset at the same time. To sum up, the function re⁃
quired for probability compensation should meet the follow⁃
ing requirements.
1) The domain of f(x)is [0, 1], and the range is also [0, 1];
2) f(x) is monotone in the domain of definition, and most of the 
values are in the numerical interval with small relative error, 

to meet the requirement of probability 
mapping and the existence of inverse 
function;
3) f(x, y) = f(x) × f(y), where x and y repre⁃
sent two input data. If this condition is 
met, the inverse function can simultane⁃
ously offset the influence of the mapping 
of two input data.

To find a function that meets the re⁃
quirements, the entry point lies in the re⁃
quirement that f(x, y) = f(x) × f(y). After 
deliberation, the power function of x can 
meet this requirement, so based on the 
power function, the function that meets 
the other two requirements is found. To 

satisfy that most of the values of f(x) are in the numerical inter⁃
val with small relative error, the time function f(x) should be 
above f(x)=x. Since the domain contains the point x=0, the sat⁃
isfying function f(x) is shown in Eq. (4).

f ( )x = xa, a ∈ ( )0, 1  . (4)
To facilitate subsequent data reverse processing and con⁃

sider the complexity problem, the corresponding function a=1/
2 is selected for simulation. The algorithm flow is consistent 
with that of Fig. 4. Random data with the same relative error 
distribution thermal map as that of the traditional stochastic 
computing multiplier in Fig. 3 are used, and the thermal map 
results obtained are shown in Fig. 5. The preprocessing func⁃

▲Figure 4. Flow chart of a probability compensation algorithm

CMP: comparator      CNT: counter      LFSR: linear feedback shift register

▲Figure 5. Heatmap of the relative computational error distribution of the stochastic computing multiplier with probability compensation
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tion is named according to the preprocessing function, where 
a=1/2 is denoted as probability compensation. After using the 
idea of probability compensation, the dark grid in the thermal 
map is completely eliminated, which means that the relatively 
large relative error value is perfectly compensated, and the 
feasibility of the idea of probability compensation is verified.
3.2 Fully Parallel Accelerator Hardware Design

3.2.1 Accelerator Architecture
In the aspect of the fully parallel accelerator, the accuracy 

of matrix multiplication is improved based on the determinis⁃
tic method. As shown in Fig. 6, the fully parallel stochastic 
computing systolic array accelerator consists of 7 modules: in⁃
put A buff, input B buff, stochastic number generator 0 
(SNG0), stochastic number generator 1 (SNG1), finite state ma⁃
chine (FSM), result buff, and SC_systolic array.

These modules are divided into three parts: the first part is 
composed of input A buff, input B buff, SNG0, and SNG1, 
which mainly completes the conversion of binary elements 
that need to be calculated in matrices A and B into the bit 
stream required for stochastic computing. The second part is 
composed of the SC_systolic array and result buff. This part is 

the core computing unit in the entire hardware structure, 
which multiplies the stochastic computing bit stream that com⁃
pletes accumulation inside the unit, and finally puts the result 
into the result buff for caching. The third part is FSM, which 
completes the generation of data flow control signals, such as 
calculation start signals, result shift signals, and calculation 
end signals.

Similar to the serial accelerator architecture, the fully paral⁃
lel accelerator proposed in this paper organizes all processing 
element (PE) units into a systolic array in the form of input 
and weight flow and partial product immobility. Input data en⁃
ter the systolic array in a step form from left to right. PE units 
in the same row share the same stochastic computing parallel 
bit stream (from matrix A). This parallel bit stream will be 
passed one by one in the same row of PE cells on a clock 
cycle. The weight data also enter the systolic array in the form 
of a ladder from top to bottom, and the processing units in the 
same column share the same stochastic computing parallel bit 
stream (from matrix B), which will be passed one by one in the 
PE cells within the same column in the number of clock 
cycles. The final calculation result is controlled by a shift con⁃
trol signal and flows between PE units on a clock cycle, and is 
finally transmitted successively to the result buff.

3.2.2 PE Unit and Systolic Array 
Design

The PE unit in the fully paral⁃
lel stochastic computing systolic 
array receives the parallel bit 
stream generated by the determin⁃
istic method and completes the 
dot product operation of the sto⁃
chastic computing bit stream. In 
addition to the PE unit directly 
connected to the stochastic se⁃
quence generator, the remaining 
PE units receive the elements, the 
result, and the shift control signal 
from the previous PE unit. Ten in⁃
ternal registers are used to cache 
data and intermediate results and 
control signals.

In a fully parallel scheme, the 
multiplication of PE cells is per⁃
formed using the partial product 
form, and four stochastic parallel 
bit streams, A_high_sc, A_low_
sc, B_high_sc, and B_low_sc, 
are generated by a stochastic se⁃
quence generator. After each sto⁃
chastic parallel bit stream is 
matched with a stochastic paral⁃
lel bit stream generated by an⁃

FSM: finite state machine
PE: processing element

SC: stochastic computing
SNG: stochastic number generator

▲Figure 6. Hardware architecture of the fully parallel stochastic computing of the systolic array
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other matrix, the number of “1” in the phase and the result 
are calculated through an addition tree structure, where the 
addition tree used is equivalent to 64 inputs, and each input is 
a 1-bit full adder. After the results of the full adder are 
shifted, the final calculation result is obtained. The shift sig⁃
nal is shift controlled and sent by the FSM to determine when 
the final cumulative results inside the PE unit will be transmit⁃
ted. When the processing unit PE has not completed the calcu⁃
lation, the shift signal is “0”, and the PE unit is responsible 
for receiving the result of the previous unit and passing it to 
the next unit. When the PE unit completes the final calcula⁃
tion, the shift signal is set to “1” and the final calculation re⁃
sults are transmitted in turn.
3.2.3 Stochastic Number Generator Design

The stochastic sequence generator used in the fully paral⁃
lel scheme uses a deterministic method to generate a stochas⁃
tic computing parallel bit stream. The data in int8 format are 
divided into a 1-bit symbol bit and two 3-bit numerical bits 
by bit segmentation, and the lowest 1-bit numerical bit is dis⁃
carded to match the partial product allocation, which is re⁃
corded as the round bit segmentation method. Fig. 7 shows 
the internal structure diagram of SNG in the hardware design 
of a fully parallel accelerator. When two 3-bit numerical bits 
enter the basic sequence generation module, each 3-bit nu⁃
merical bit is copied by binary weight, and the highest bit is 
fixed as “0”, because the results generated by the copied and 
rotating methods are independent of the sorting method of 
the basic stochastic sequence. A base stochastic sequence of 
8-bit without introducing additional hardware consumption is 
generated.

One datum in the int8 format corresponds to two basic sto⁃
chastic sequences. In the matrix multiplication operation, the 
int8 input data in matrix A correspond to the internal opera⁃

tion of SNG0, and the two basic stochastic sequences gener⁃
ated in SNG0 are continuously copied 7 times using the cop⁃
ied unit. The high 64-bit width corresponds to the stochastic 
parallel bit stream A_high_sc, and the low bits correspond to 
the stochastic parallel bit stream A_low_sc. The internal line 
connection of the copied unit is shown in Fig. 8a. The input 
data of int8 in matrix B correspond to the internal operation 
of SNG1. SNG1 uses the rotating unit to replace the copied 
unit in SNG0, and the rest are completely consistent with 
SNG0. The SNG1 internal structure diagram is no longer 
listed here. The two basic stochastic sequences generated in 

LSB: least significant bit
▲Figure 7. Fully parallel random number generator

▲Figure 8. Copied and rotating units
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SNG1 are rotated 7 times by the rotating unit to obtain a 64-
bit high corresponding to a stochastic parallel bit stream 
B_high_sc and a 64-bit low corresponding to a stochastic par⁃
allel bit stream B_low_sc. The internal line connections of 
the rotating unit are shown in Fig. 8b. Finally, four stochastic 
parallel bits are generated and transmitted into the systolic 
array. The generation process only changes the order of con⁃
nections and the number of replicated connections without in⁃
troducing additional hardware consumption.
4 Experiment and Analysis

4.1 Software Simulation Results and Analysis
The designed two accelerators are applied to the neural net⁃

work through the img2col algorithm. The seeds used for each 
random number generator are the same as previously men⁃
tioned. The network used is Resnet 18[8], and the quantization 
bit is 1-bit symbol bit plus 7-bit numerical bit. The MNIST[9] 
and the CIFAR-10[10] data sets are used for testing, and the 
test results obtained are shown in Table 1.

In the MNIST data set, there is no significant difference be⁃
tween schemes. The accuracy of all schemes except traditional 
schemes can reach more than 99% in the MNIST data set, and 
the accuracy of traditional SC schemes can also reach 
98.56%. When tested on the more complex CIFAR-10 data⁃
set, the accuracy of the traditional SC scheme is only 80.34%, 
15% lower than that of binary. The precision is improved to 
95.32% by the x  probability compensation SC scheme and 
95.06% by the deterministic SC scheme.
4.2 Back-End Implementation Results and Analysis

The layout and cabling of the TSMC 28 nm process with 
process nodes are completed by using the layout tool IC com⁃
piler (ICC) and the core voltage is 0.9 V. The layout param⁃
eters achieved are shown in Table 2.

According to the process node scaling method[11], the 65 nm 
process node used by the Eyeriss v2 accelerator[12] is normal⁃
ized to the 28 nm process node used in this work, and the 
clock frequency scaling parameters are shown in Eq. (5).

Nc = 65
28 . (5)

Load capacitance scaling parameters are shown in Eq. (6).
NCL = 65

28  . (6)
Dynamic power consumption is the main power consump⁃

tion in high-speed chips, and the dynamic power consumption 
formula of switches is shown in Eq. (7).

P = V 2 ⋅ CLoad ⋅ f . (7)
Therefore, power scaling parameters are shown in Eq. (8).
NP = ( )0.9

1.2
2

⋅ 28
65 ⋅ 65

28 = 0.562 5. (8)
The energy efficiency ratio formula is shown as Eq. (9).
GOPS/W = calculations per second

P  . (9)
The energy efficiency ratio corresponding to the designed 

accelerator can be obtained according to Eq. (9). By combin⁃
ing Eqs. (5), (8), and (9), the normalized parameters of the en⁃
ergy efficiency ratio can be calculated as shown in Eq. (10).

N = 1
0.562 5 × 65

28 = 4.126 98 . (10)
Table 3 compares the results of the energy efficiency ratio 

between the neural network accelerator implemented in this 
work and the Eyeriss v2 accelerator[12], in which the energy ef⁃
ficiency ratio in the Eyeriss v2 accelerator is normalized. It 
can be seen from the results of Table 3 that compared with the 
normalized energy efficiency ratio of the Eyeriss v2 accelera⁃

▼Table 1. Test results of neural network accelerator application based 
on stochastic computing

DataSet

MNIST

CIFAR-10

Method
Binary

Traditional SC
x  Probability compensation SC

Deterministic method SC
Binary

Traditional SC
x  Probability compensation SC

Deterministic method SC

Network Accura⁃
cy/%
99.55
98.56
99.50
99.43
95.52
80.34
95.32
95.06

SC: stochastic computing

▼ Table 3. Comparsion of stochastic computing DNN implementations 
with other very large scale integration circuit (VLSI) deep neural net⁃
works (DNN) 

Accelerator

Eyeriss v2[12]

Classic serial
Fully parallel

Type

Binary computing
Uncompensated

Deterministic method

Process 
Node/nm

65
28
28

EER
(GOPS/W)

253.2
6 297.7
1 371.0

Normalized 
EER

(GOPS/W)
1 045.0
6 297.7
1 371.0

EER: energy efficiency ratio

▼Table 2. Layout parameters of the neural network accelerator based 
on stochastic computing

Method
Traditional SC
Fully parallel

Type
Uncompensated

Deterministic method

Clock Frequen⁃
cy/MHz
1 000
313

Area/
mm2

0.104
0.601

Power/
mW
81.3

116.7
SC: stochastic computing
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tor, the fully parallel stochastic computing neural network ac⁃
celerator based on the deterministic method has improved by 
31%. Although the normalized energy efficiency ratio of tradi⁃
tional stochastic computing neural network accelerators is the 
highest, the data set of this scheme is less accurate and should 
not be compared with.
5 Conclusions

In this paper, a probability compensation algorithm is pro⁃
posed based on the relative error distribution of the tradi⁃
tional stochastic multiplier. The accuracy of the accelerator 
on the CIFAR-10 dataset is 95.32%. In addition, a fully par⁃
allel neural network accelerator based on the deterministic 
method is designed, and the accuracy of the accelerator on 
the CIFAR-10 dataset is 95.06%. This design adopts TSMC 
28 nm CMOS technology, and the energy efficiency is 1.371 
TOPS/W. Through hardware and software evaluation, the 
implementation results show that the proposed design is su⁃
perior to the hardware implementation of DNN based on tra⁃
ditional binary computing logic in terms of energy efficiency 
ratio, and the network accuracy is superior to the traditional 
SC-DNN implementation.
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