
ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

CHEN Hao, ZHANG Kaijiong, CHEN Jun, ZHANG Ziwen, JIA Xia

Unsupervised Motion Removal for Dynamic SLAM Research Papers

Unsupervised Motion Removal for Unsupervised Motion Removal for
Dynamic SLAMDynamic SLAM

CHEN Hao1,2, ZHANG Kaijiong1,2, CHEN Jun1,2,

ZHANG Ziwen1,2, JIA Xia1,2

(1. ZTE Corporation, Shenzhen 518057, China；
 2. State Key Laboratory of Mobile Network and Mobile Multimedia
Technology, Shenzhen 518055, China)

DOI: 10.12142/ZTECOM.202404010

https://kns.cnki.net/kcms/detail/34.1294.TN.20241031.1625.002.html,
published online November 1, 2024

Manuscript received: 2024-02-29

Abstract: We propose a dynamic simultaneous localization and mapping technology for unsupervised motion removal (UMR-SLAM),
which is a deep learning-based dynamic RGBD SLAM. It is the first time that a scheme combining scene flow and deep learning SLAM is
proposed to improve the accuracy of SLAM in dynamic scenes, in response to the situation where dynamic objects cause pose changes.
The entire process does not require explicit object segmentation as supervisory information. We also propose a loop detection scheme
that combines optical flow and feature similarity in the backend optimization section of the SLAM system to improve the accuracy of loop
detection. UMR-SLAM is rewritten based on the DROID-SLAM code architecture. Through experiments on different datasets, it has been
proven that our scheme has higher pose accuracy in dynamic scenarios compared with the current advanced SLAM algorithm.
Keywords: dynamic RGBD SLAM; update module; motion estimation; scene flow

Citation (Format 1): CHEN H, ZHANG K J, CHEN J, et al. Unsupervised motion removal for dynamic SLAM [J]. ZTE Communications,
2024, 22(4): 67–77. DOI: 10.12142/ZTECOM.202404010
Citation (Format 2): H. Chen, K. J. Zhang, J. Chen, et al., “Unsupervised motion removal for dynamic SLAM,” ZTE Communications,
vol. 22, no. 4, pp. 67–77, Dec. 2024. doi: 10.12142/ZTECOM.202404010.

1 Introduction

Simultaneous localization and mapping (SLAM) is an
important technology in computer vision and autono⁃
mous robot navigation research. Its main goal is to en⁃
able mobile devices (robots, autonomous vehicles, un⁃

manned aerial vehicles or AR/VR devices) to achieve au⁃
tonomous positioning and map building by interacting with
sensors in unknown or changing environments. SLAM sys⁃
tems typically include the following key components: data
collection and preprocessing, front-end data processing,
state estimation, map construction, and backend optimiza⁃
tion, such as the typical Oriented FAST and Rotated BRIEF
(ORB) -SLAM system. At present, although SLAM technol⁃
ogy faces many challenges, such as sensor accuracy errors,
computational complexity, and real-time requirements, it is
still the core technology of many autonomous systems, pro⁃
viding the possibility for machines and equipment to navi⁃
gate and work efficiently in complex environments.

In recent years, many deep learning and traditional SLAM
fusion schemes have been proposed to improve the perfor⁃
mance and robustness of environmental perception and pose
estimation. Deep neural networks can play a crucial role in
image feature extraction, semantic map construction, and
loop detection. Extracting feature points or descriptors

through deep learning models can improve the accuracy of
image matching and feature tracking in visual SLAM. Deep
learning can be used to establish a loopback detection
model for visual and semantic contexts, which is used to de⁃
tect whether the robot has returned to the previously visited
position, and then perform global optimization to reduce cu⁃
mulative errors. Deep learning can also be used for semantic
map construction, enabling robots to understand the seman⁃
tic information of different objects and regions in the envi⁃
ronment, which contributes to autonomous decision-making
and path planning in the field of autonomous driving. In ad⁃
dition, eliminating dynamic objects can also effectively im⁃
prove the accuracy of pose estimation.

Semi-supervised or unsupervised SLAM is an emerging
research field that explores how to train SLAM systems with
unlabeled or limited labeled data. This method helps to ad⁃
dress the dependency on large numbers of labeled data in
traditional SLAM methods. Deep learning can also achieve
end-to-end SLAM, directly generating maps and trajectories
from sensor data without the need for intermediate steps. Re⁃
cently, some research efforts have been devoted to designing
more effective multimodal fusion strategies. The goal is to
fuse data from different types of sensors, such as vision,
light detection and ranging (LiDAR), GPS and inertial mea⁃

67

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

CHEN Hao, ZHANG Kaijiong, CHEN Jun, ZHANG Ziwen, JIA Xia

Research Papers Unsupervised Motion Removal for Dynamic SLAM

surement unit (IMU), together to improve the robustness and
accuracy of SLAM systems. Real-time performance has al⁃
ways been a key challenge for SLAM systems. Researchers
are striving to improve the computational efficiency of
SLAM systems to meet the requirements of real-time appli⁃
cations such as autonomous driving, virtual reality, and ro⁃
bot navigation. Their main tasks include hardware accelera⁃
tion, low-power algorithms, and distributed SLAM.

The current state-of-the-art algorithm DROID-SLAM[30]
combines traditional methods with deep learning and has the
advantages of high accuracy, strong robustness, and good gen⁃
eralization. However, it does not perform well in dynamic sce⁃
narios like the KITTI dataset, and pose estimation is easily af⁃
fected by passing vehicles and pedestrians. As shown in Fig.
1, when a truck moves from left to right across the camera
frame, the algorithm may mistakenly perceive the camera as
undergoing a left-turning motion, leading to erroneous pose es⁃
timation outputs. Therefore, based on DROID-SLAM, we pro⁃
pose a new SLAM scheme to address the issue of dynamic ob⁃
jects affecting algorithm accuracy. The main contributions of
our work are summarized as follows:

• We propose for the first time a scheme that combines
scene flow and deep learning SLAM to improve the accuracy
of SLAM in dynamic scenes while outputting dynamic object
masks. The entire process does not require explicit object
segmentation as supervisory information.

• We propose a new update module that can iteratively
update the camera pose.

• We propose a loop detection scheme that combines opti⁃
cal flow and feature similarity to improve the accuracy of
loop detection without increasing additional computational
complexity.
2 Related works

2.1 Dynamic SLAM
SLAM solutions typically assume that the scene is almost

static or has a low level of dynamism. However, there are of⁃
ten a large number of dynamic objects in real-world sce⁃
narios, including pedestrians, animals, cars, bicycles, and
other dynamic objects, which can cause erroneous changes
in feature matching relationships, resulting in inaccurate re⁃
sults due to the lack of reliable features in SLAM solutions.

To solve the above problem, some methods adopt object
detection or semantic segmentation schemes to eliminate po⁃
tential dynamic targets[1–4]. However, a large number of se⁃
mantic segmentation objects in the camera’s field of view
may lead to insufficient features, which in turn can lead to
problems with map matching and motion tracking, such as
decreased system accuracy, tracking failures, and trajectory
loss. In fact, dynamic objects may be static in the scene.
Due to the limitations of semantic categories, on the one
hand, they cannot cover all potential dynamic targets; on the

other hand, some static objects are dynamic in the scene,
such as books in people’s hands. Many studies have intro⁃
duced additional constraints to confirm the true dynamic ob⁃
jects in the scene. Based on semantic segmentation, authors
in Ref. [5] utilize deep inconsistency checking to remove po⁃
tential dynamic objects. Some methods do not rely on prior
semantic information but distinguish between dynamic and
static through the association with feature points[6–9]. Refs.
[10] and [11] use dense optical flow methods and semantic
segmentation to estimate the motion of objects in the scene,
which helps to construct a globally consistent scene map
and improve the robustness and accuracy of the system.
Refs. [12] and [13] predict the camera’s self-motion itera⁃
tively by correlating the camera’s self-motion with the seg⁃
mentation of dynamic objects, achieving their joint optimiza⁃
tion in a single learning framework. Unlike the above re⁃
search, the method proposed can output pixel-level pose
changes unsupervised, segment true dynamic objects, and
have higher robustness to different dynamic scenes.
2.2 Optical Flow and Scene Flow

In SLAM algorithms, optical flow is commonly used to rep⁃
resent motion information between adjacent frames in a
video sequence. This motion information can help SLAM
systems estimate camera motion more accurately when pro⁃
cessing dynamic scenes.

Deep learning-based optical flow estimation methods
have gradually become a mainstream research direction.
The FlowNet series[14–15] is the first to use an end-to-end
deep learning architecture for optical flow estimation, em⁃
phasizing the importance of the training data sequence. Ref.
[16] introduces many novel improvements of unsupervised
optical flow models to enhance performance metrics. Refs.
[17] and [18] consider the use of coarse-to-fine techniques
to improve the performance metrics of optical flow networks.
Refs. [19] and [20] construct multi-scale 4D correlation vol⁃
umes for all pixels and iteratively update the optical flow

▲Figure 1. Two images from the KITTI07 sequence

68

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

CHEN Hao, ZHANG Kaijiong, CHEN Jun, ZHANG Ziwen, JIA Xia

Unsupervised Motion Removal for Dynamic SLAM Research Papers

field through recurrent units that search the correlation vol⁃
umes. Refs. [21] and [22] use multi-frame information for op⁃
tical flow fusion to enhance optical flow computation perfor⁃
mance. Additionally, some approaches[23–24] have made sig⁃
nificant efforts to improve the computational efficiency of
lightweight optical flow estimation networks for mobile and
low-power usage scenarios.
2.3 Loop Detection

Backend optimization is a key step in SLAM systems to
improve the accuracy of positioning and mapping. Usually,
graph optimization or nonlinear optimization techniques are
used to minimize estimation errors. Closed loop detection is
the key to optimizing the backend of SLAM systems. Closed
loop detection or position recognition is also an important
module for reducing trajectory errors in the SLAM backend.
The traditional loop detection scheme is based on a bag of
words (BoW) [25] for storage and uses manually designed vi⁃
sual features. The BoW method first extracts features, in⁃
cluding scale invariant feature transform (SIFT), speeded-up
robust features (SURF), ORB, etc., from a large number of
training images, and classifies these features (Word) with K-
means clustering algorithms to obtain leaf nodes called dic⁃
tionaries. Therefore, an image can be described as a vector
under the dictionary based on whether the corresponding
word (Word) appears. However, changes in lighting,
weather, viewpoints, and moving objects in real-world
scenes makes this problem more complex. Different from tra⁃
ditional word bag-based methods, deep networks can typi⁃
cally learn complex internal structures in image data with⁃
out manual design of visual features.

To address this issue, previous research works like Ref.

[26] use ConvNet features that are more robust to changes in
viewpoints and conditions and derived from pretrained mod⁃
els on a universal large-scale image processing dataset. This
scheme can predict the matching landmark candidate boxes
between images and extract features. To improve the algo⁃
rithm’efficiency, Gaussian random projection (GRP) is used
to reduce the data dimension for feature similarity calcula⁃
tion. However, for high-dimensional data with partially non-
uniform distribution, using GRP is not conducive to preserv⁃
ing the original variance.

Other representative works[27–29] are based on deep auto⁃
matic encoder structures to extract compact representations
that compress scenes unsupervisedly.
3 Proposed Method

Our proposed simultaneous localization and mapping
technology for unsupervised motion removal (UMR-SLAM)
structure is shown in Fig. 2. We input a set of RGBD image
sequences and use encoders to extract features and context
features respectively. By calculating the correlation volume
through the feature dot product, the update operator itera⁃
tively updates the pose changes of each pixel, and calcu⁃
lates the optical flow and dynamic region mask based on the
pixel-by-pixel pose. After removing the optical flow from the
dynamic region, the camera pose is obtained through bundle
adjustment (BA) optimization. Finally, in the backend opti⁃
mization, the global pose and trajectory are optimized based
on the loop detection results to reduce cumulative errors.
This method takes RGBD image sequences as input and out⁃
puts camera pose. UMR-SLAM has an end-to-end differen⁃
tiable architecture, which combines the advantages of classi⁃
cal methods and deep learning networks. We use the scene

▲Figure 2. System structure of UMR-SLAM

BA: bundle adjustment DBA: dense bundle adjustment

Input image sequence

Trajectory

Output Global BA

Backend optimization

Loop detection
Pose

DBAlayer
Static flow Optical flow fieldOptical flow field

Motion field mask

Rotation

Translation

Iterate N timesContext features

Build correlation volume
Dynamicupdatemodule

Extract features

Res
net

 50

Fea
ture

s
enc

ode
r

…

Motion field judgment

69

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

CHEN Hao, ZHANG Kaijiong, CHEN Jun, ZHANG Ziwen, JIA Xia

Research Papers Unsupervised Motion Removal for Dynamic SLAM

flow method to unobservedly remove dynamic objects, and
integrate the results of the two detection schemes, optical
flow and feature similarity in loop detection, making the
SLAM system more robust in dealing with challenging dy⁃
namic scenes. Specifically, distinguished from DROID-
SLAM, which iteratively updates camera pose and depth, we
iteratively update the poses of all pixels. In DROID-SLAM,
the optical flow is used to perform every update of camera
poses, while we only use the optical flow caused by camera
motion to calculate camera poses. Next, we elaborate on the
details of our method.
3.1 Network Architecture

The core of the proposed dynamic SLAM network is to use
a dynamic update module to estimate the 3D rigid body mo⁃
tion of all pixels in the scene, and then calculate the optical
flow and dynamic region. The camera pose is optimized
through BA. Compared with DROID-SLAM, which uses opti⁃
cal flow as the intermediate motion representation, we can
determine the pixels of dynamic objects by unsupervised
learning technology and only use the static optical flow
caused by camera motion to calculate camera pose, which
can greatly improve the positioning accuracy of the algo⁃
rithm in dynamic scenes.

In contrast to DROID-SLAM, we directly input the RGBD
images for feature extraction and optical flow calculation.
For each pair of RGBD images, in the dynamic update mod⁃
ule, we iteratively update the 3D motion of all pixels, rather
than the camera pose and inverse depth map. Our update it⁃
eration not only runs on adjacent frames but can be applied
to any number of frames to obtain higher accuracy scene
flow information and achieve joint global refinement of all
camera poses, which helps to minimize long trajectories and
loop drift. In the backend optimization, we also use the
Gaussian Newton method to execute BA to adjust the cam⁃
era pose T to minimize the cost function.

We use a frame graph to represent the covisibility be⁃
tween frames. We determine whether two frames are co⁃
viewed through optical flow and establish a coview frame
map. Differing from DROID-SLAM, we use the completed
depth map instead of the original one to calculate the frame
graph. In the coview, nodes represent each input image, and
edges, which are the connections between nodes, indicate
that the two images are covisible. During the training and in⁃
ference process of the model, the frame graph is dynamically
constructed and updated. Each time a new optical flow is
calculated to remove dynamic objects, the frame map with
new visibility is updated.
3.1.1 Features Extraction

In the feature extraction module, we use conventional re⁃
sidual modules and downsampling convolution modules to
obtain high-dimensional dense feature maps with a resolu⁃

tion of 1/8 of the original image. At the same time, we use
pretrained ResNet50 with skip connections to extract con⁃
text features at 1/8 resolution. ResNet50 can extract fea⁃
tures with a greater degree of semantic information and a
larger receptive field, which can be better used for loop de⁃
tection and rigid motion object grouping.
3.1.2 Building Correlation Volume

1) Correlation pyramid: For two frames Ii and Ij with a
common view, the correlation volume C is calculated using
the dot product of two position feature vectors in the feature
map f, as shown in the following equation.

Cij
u1 v1u2 v2 = f (Ii)u1 v1 ⋅ f (Ij)u2 v2, (1)

where Ci,j
u1,v1,u2,v2 ∈ RH × W × H × W represents the correlation be⁃

tween the features of image Ii at position (u1, v1) and image Ij at position (u2, v2). Then we use average pooling concatena⁃
tion to establish a four-layer correlation pyramid.

2) Correlation lookup: The lookup operator is Lr:
RH × W × H × W × RH × W × 2 → RH × W × (r + 1)2. This operator uses bi⁃
linear interpolation to index the relevant volume using an op⁃
tical flow field coordinate grid with a radius of r. Splice the
relevant features found at each layer of the relevant pyramid
into a feature vector.
3.1.3 Dynamic Update Module

Fig. 3 shows the dynamic update module of UMR-SLAM.
We find the relevant features of the optical flow calculated
by the current pixel pose through the relevant volume. The
obtained features are fed together with static optical flow
and global feature dynamics into two convolutional layers,
resulting in intermediate features. These features are then
fed into convolutional gated recurrent unit (ConvGRU), and
then optical flow residuals, their confidence levels, and
rigid motion embedding vectors are obtained through convo⁃
lutional layers. The dense pixel pose T can be updated using
the least squares method. According to the dense pose calcu⁃
lation, the dynamic region of the optical flow is deducted
and fed into the DBA layer, which combines the optical flow
confidence to optimize the camera pose. Finally, the opti⁃
mized camera pose is used to calculate optical flow and pro⁃
vided for the next iteration. Not similar to the iterative opera⁃
tion of the update module in DROID-SLAM, the update op⁃
erator combines neural networks and optimization algo⁃
rithms to update the dense pixel pose, and then performs
subsequent optical flow and camera pose calculations based
on the pixel pose. The update operator is based on the Con⁃
vGRU of recurrent neural networks (RNN) for iterative up⁃
dates. The optical flow and the pixel density pose are fed
into the next iteration as new optimization terms. During
each iteration of the update process, the module generates
dense pixel pose increments, optical flow generated by cam⁃

70

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

CHEN Hao, ZHANG Kaijiong, CHEN Jun, ZHANG Ziwen, JIA Xia

Unsupervised Motion Removal for Dynamic SLAM Research Papers

era motion, dynamic object masks, and camera pose.
1) Update operator: The update operator is a GRU unit

based on a recurrent neural network, mainly composed of 3×
3 convolutional kernels with dilation rates of 1 and 3. It uses
index operators to retrieve features from correlated volumes
and output optical flow correction quantities. We use depth
maps and the current estimated pose to estimate the 2D cor⁃
respondence. Taking the edges in the frame graph (i, j) ∈ ε
as an example, pi is the grid coordinate of frame i. pij is the
corresponding projection coordinate of frame i in frame j,
and the projection transformation process is as follows:

pi, j = ()Tsi,j ⋅ ∏c

-1 (pi,di) , (2)
where ∏c

 is a pinhole camera model that maps a set of 3D
points to the image, while ∏c

-1 is the inverse projection
function that maps the inverse depth map di and pi to the 3D
point cloud. The pose transformation matrix between image i
and image j is Tsi,j. We can obtain pij through the transforma⁃
tion of 3D points in the world coordinate system and the pin⁃
hole camera model.

Based on the corresponding relationship, we can retrieve
correlation features in the correlation volume and calculate
the optical flow field pij - pj. The input of GRU includes opti⁃
cal flow field, current dense pixel pose, depth residual d' -
d∗, and correlation features. In the depth residual term, the
inverse depth d' is the depth component of pij, and d* is the
inverse depth map of pij index image frame j. Each feature is
extracted with high-dimensional information through two
convolutional layers, and then fed into the GRU module.

Then, three two-layer convolu⁃
tions are applied to the hidden
states of the GRU output to calcu⁃
late the rigid motion embedding
map V, the revision map optical
flow field correction map r= (rx,
ry, rz), and the corresponding con⁃
fidence w∈ [0, 1]. The correction
amount r is the correction of the
optical flow caused by the current
SE3 field. Three outputs serve as
inputs to the dense-SE3 layer to
generate updates to the SE3
sports field. The confidence level
of w as the optical flow correction
is used to calculate the cost func⁃
tion.

The resolution of the SE3 mo⁃
tion field estimated by the net⁃
work is 1/8 of the original image
resolution. To obtain the original
resolution map, we perform con⁃
vex upsampling in Lie Algebra

and then use exponential mapping back to the manifold.
2) Dense-SE3 layer: This layer is a differentiable optimi⁃

zation layer used to update the current pose of pixels. It
maps the optical flow revision mapping r to the SE3 field up⁃
date. The rigid motion embedding vector v is used to soft⁃
group pixels into rigid objects. We use embedding vectors to
build an attention matrix between all pairs of (i,j). We calcu⁃
late the similarity aij∈[0, 1] between two embedding vectors
vi and vj by taking the sigmoid activation function σ of the
negative L2 distance.

aij = 2*σ ()- v i - v j

2 ∈ [0,1] . (3)
We use similarity to define an objective function based on

reprojection error to solve the updated pose δi for each
pixel i:

E (δ) = ∑
i ∈ Ω

∑
j ∈ Ni

aij rj + ∏c
(Tj Xj) - ∏c

(eδiTi Xj) 2
wj , (4)

where  X 2
w = XTdiag (w) X. The above equation indicates

that for each pixel i in the image area Ω, the transformation Ti is described as a transformation of pixel j in the neighborhood
Ni of pixel i. Only objects with similar embedding vectors that
may belong to the same rigid motion as (i, j) have a significant
contribution to the objective function. To reduce the memory
footprint when solving Eq. (4), we implement Gaussian New⁃
ton updates in CUDA to estimate the next SE3 pose.

3) Motion field judgment: Moving objects in the image

▲Figure 3. Dynamic update module

DBA: dense bundle adjustment GRU: gated recurrent unit LS: least squares

Context
features

correlation
volumes

L

ConvGRUHidden state

LS-solver
r w v

Flow Motion

T∈SE(3)H×W

PoseDBA layer Static flow DBA layer Static flowPose

MotionFlow

LS-solver
r w v

ConvGRU

L

. . .

71

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

CHEN Hao, ZHANG Kaijiong, CHEN Jun, ZHANG Ziwen, JIA Xia

Research Papers Unsupervised Motion Removal for Dynamic SLAM

greatly affects the calculation of camera pose. Therefore, it
is very necessary to remove dynamic objects. We filter the
rotation and translation of each pixel predicted by the scene
flow algorithm as shown in Figs. 4b and 4c, and if the pose
τi and ϕi of pixel i differ from the average motion pose τmean and ϕmean of the entire image by more than a certain thresh⁃
old (μ set to 0.01), it is regarded as a motion point as shown
in Fig. 4d. We set the optical flow mask M of the moving
point directly to 0, without performing subsequent camera
pose estimation.

M motion
i = [||τi - τmean|| ≥ μτ] + [||φi - φmean|| ≥ μφ] . (5)

4) DBA: After obtaining the corrected static flow field, we
use the Gaussian Newton-based dense bundle adjustment
(DBA) layer algorithm in DROID-SLAM to optimize the cam⁃
era pose G. The DBA layer does not affect gradient back⁃
propagation. The error function is defined as follows:

E (G') = ∑
(i,j) ∈ ε

 p*
i,j - ∏c

(G'i,j ⋅ ∏c

-1 (pi, d'i)) 2
Σ ij , (6)

Σ ij = diagwij , (7)
where p*

i,j = ri,j + pi,j represents the updated and corrected
pi,j. Eq. (7) calculates the Mahalanobis distance weight, and
the error term is weighted based on the combined confi⁃
dence wij. The HΔx=g problem can be solved by Schur elimi⁃
nation using the sparsity property of matrix H to accelerate
the solution process.
3.2 Supervision

We use pose loss and flow loss supervision to train our
network. Both loss functions are applied to paired training
sequences. We calculate the static optical flow fstatic based
on the camera pose predicted through each iteration. The op⁃
tical flow calculated from the true depth and camera pose
truth is used as the supervisory information fgt.

f kstatic = ∏c()G ⋅ ∏c
-1 (p) - p, (8)

where G represents the camera pose, p represents the image
coordinate grid, and k represents the number of iterations.
We design the loss as the average L2 distance between two
optical flow fields.

L flow = ∑
k = 1

N

γN - k f kstatic - fgt 2, (9)
with γ= 0.9. We also apply an additional loss function to the
GRU-predicted optical flow increment and set the weight
to 0.2.

Pose loss uses the actual pose T and the predicted camera
pose G after each update to calculate the loss.

Lpose = ∑
k = 1

N

γN - k LogSE3 (T -1 ⋅ Gk) 2. (10)
The overall loss function is the sum of pose loss and opti⁃

cal flow loss. To ensure that the two types of losses are on
the same order of magnitude, we use coefficients w1 and w2 to adjust the weights of the two types of losses. We set w1 to
0.1 and w2 to 1.

L = w1 L flow + w2 Lpose. (11)

3.3 SLAM System
In terms of input modes, our SLAM system only supports

RGBD data input. In the inference stage, we embed the
above network structure into the entire SLAM system.

During initialization, our algorithm accumulatively re⁃
ceives 12 keyframes based on optical flow differences, con⁃
structs frame maps for them, and uses our dynamic update
module to calculate their initial pose. In addition, we pro⁃
cess on the depth image.

1) Depth image estimation: The importance of depth infor⁃
mation has been well demonstrated by a large amount of re⁃

▲Figure 4. (a) Original image; (b) visualization image of translation amount;(c) visualization image of rotation amount; (d) dynamic region mask

(a) (b) (c) (d)

72

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

CHEN Hao, ZHANG Kaijiong, CHEN Jun, ZHANG Ziwen, JIA Xia

Unsupervised Motion Removal for Dynamic SLAM Research Papers

search work in the past. Usually, we use depth sensors to ob⁃
tain accurate and reliable distance measurements, while
also possessing real scene scales. However, neither LiDAR
nor other commonly used RGBD cameras can provide dense
pixellevel depth maps. The holes and blank pixels in sparse
depth maps indicate a serious lack of information at the ap⁃
plication level, leading to algorithm reliability failure.
Therefore, it is necessary to fill in these blank pixels in prac⁃
tical applications.

Specifically, for the KIITI dataset, we directly obtain la⁃
ser data from the odometer dataset and convert it into depth
images. Obviously, as shown in Fig. 5, the lack of depth in⁃
formation is very severe, with only 5% of the available pixel
points in the entire image. Here, we use the Completion⁃
Former[31] algorithm to complete the depth map. Before and
after processing, as shown in Fig. 5, we also attempt to use
the GA-net[32] algorithm to estimate disparity maps using
binocular data and obtain depth maps.

In front-end processing, when a new frame arrives, the
system uses the three closest adjacent frames and the new
frame to create a temporary graph, and optimize and calcu⁃
late the pose of the new frame.

In backend optimization, the system creates a new frame
graph containing each reserved keyframe. The edges be⁃
tween key frames are generated according to specific rules
to eliminate excess edges. We use a dynamic update module
to optimize the final pose of the entire shape. Then, through
the proposed loop detection scheme, we directly add edges
between the two frames with loops to the frame graph for sub⁃

sequent global BA optimization.
2) Loop detection: In backend optimization, closed-loop

detection is used to detect and correct path drift. It identi⁃
fies features that appear on previously visited locations and
uses this information to adjust device location estimates and
maps to reduce cumulative errors. We found that DROID-
SLAM uses optical flow for loop detection, which often fails
to detect loops well in real-world scenarios and has poor ro⁃
bustness. Using only optical flow to determine whether a
loop exists may lead to missed detection.

In UMR-SLAM, we propose a solution that combines
high-dimensional image feature similarity with optical
flow calculation to improve loop detection accuracy. Image
feature similarity schemes typically handle image noise
more robustly, especially in scenarios with lighting
changes, occlusions, or other complex environments,
where similarity is more reliable than solely relying on op⁃
tical flow. Compared with optical flow, which focuses only
on local motion information, image feature similarity
schemes compare the content of entire images, capturing
similarity between images from a global perspective. This
can compensate for the limitation of local motion and im⁃
prove matching accuracy. Combining image feature simi⁃
larity schemes with optical flow calculation provides addi⁃
tional information to validate the existence of loops. For
example, if optical flow calculation detects significant mo⁃
tion but the image feature similarity is high, it may indi⁃
cate environmental similarity, allowing for more confident
loop detection and reducing missed detection. Integrating
these two types of information enhances loop detection ac⁃
curacy and robustness, particularly in situations where op⁃
tical flow calculation may be affected by noise or encoun⁃
ters significant motion. Therefore, we add a branch to the
entire SLAM system for loopback detection. We directly
utilize the global context Resnet50 features of existing
keyframes for feature similarity comparison.

To improve the algorithm’efficiency, we use the principal
component analysis (PCA) for feature dimensionality reduc⁃
tion before feature similarity comparison. PCA can identify
the intrinsic patterns of data based on the relationship be⁃
tween features. By calculating the eigenvalues of the covari⁃
ance matrix and corresponding eigenvectors, the direction of
maximum variance is found in high-dimensional data, and
the data are mapped to a new subspace with a dimensional⁃
ity not greater than the original data. We use the feature
maps of the first 128 channels for PCA dimensionality re⁃
duction to 128×30.

Next, cosine distance d is used to measure the distance
between two features for loop detection.

dcos = cos (v1,v2), (12)
where v1 and v2 represent the feature vector expressions of the ▲Figure 5. RGB, original laser depth map, and completed depth map:

from top to bottom

73

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

CHEN Hao, ZHANG Kaijiong, CHEN Jun, ZHANG Ziwen, JIA Xia

Research Papers Unsupervised Motion Removal for Dynamic SLAM

image pair. If it is less than a certain threshold τ (set to 0.12),
it is considered that a loopback has been detected.
4 Experiments

Initially, UMR-SLAM is trained on datasets Virtual
KITTI2[33] and KITTI[34], followed by a comprehensive evalu⁃
ation of the methodologies on various real and synthetic da⁃
tasets, encompassing dynamic sequences from Virtual
KITTI2, KITTI, and TUM-RGBD[35]. During the experimen⁃
tation phase, the absolute trajectory error (ATE) serves as
the metric for assessing the accuracy of the estimated cam⁃
era trajectory. Subsequently, a series of ablation experi⁃
ments are devised to validate the efficacy of the proposed
method in dynamic scenarios. Afterward, comparisons are
drawn between our method and other advanced algorithms
in dynamic scenarios, such as ORB-SLAM2[36], DROID-
SLAM, and DynaSLAM[37], to showcase the effectiveness of
our method and the robustness of pose estimation.
4.1 Datasets

We train and test using partial Virtual KITTI2 and KITTI
datasets. KITTI is a dataset captured in real-world traffic
conditions, ranging from highways in rural areas to city-
center scenes with many static and dynamic objects. The
KITTI dataset is typically used as a benchmark test set for
stereo vision, optical flow, depth prediction, object detec⁃
tion, and visual mileage calculation methods. We mainly use
00–08 of the visual odometer data as the training set, and
09 and 10 as the test set.

Virtual KITTI2 is a synthetic dataset modeled after the
KITTI dataset, consisting of 5 sequences. These sequences
enhance data by overlaying different weather conditions
(such as fog and rain) and modifying camera directions and
angles. In the ablation study, we use the default camera ori⁃
entation as the training set and configurations of 15 and 30
degrees as the validation set.
4.2 Training Implementation Details

We use 8 NVIDIA GPU V100 for training. Considering
the possibility of inaccurate depth completion values in the
sky and limited graphics memory, we randomly crop 208×
960 sized images below the images for training, while modi⁃
fying the internal parameter data.

We make minor adjustments to KITTI to perform an addi⁃
tional 50k iterations with an initial learning rate of 5×10−5,
and perform spatial and photometric enhancements. To esti⁃
mate parallax, we provide input depth maps for our method
using GA-Net.

For all experiments, we use the AdamW optimizer with
weight attenuation set to 1×10−5, and expand the update op⁃
erator for 12 iterations. We use partial model weights from
ImageNet and RAFT-3D as pretrain weights. Training
RAFT-3D involves differentiating a computational graph

composed of Euclidean tensors (such as network weights
and feature activation) and Lie group elements (such as the
SE3 transformation domain). We use the LieTorch library to
perform backpropagation in the tangent space of manifold el⁃
ements in computational graphs.

Adjusting the weights of the two loss functions simultane⁃
ously to make their order of magnitude similar. Due to the
fast camera movement in the KITTI dataset, we optimize the
optical flow filtering threshold and expand the range of opti⁃
cal flow selection when establishing frame maps before train⁃
ing. For pixels with missing depth, we directly assign their
depth value to 0.01, resulting in an inverse depth of 100.
This point is not considered when calculating the overall op⁃
tical flow, and the mask is set to 0.
4.3 Results

In this section, we compare our proposed approach with
current state-of-the-art methods on the main-stream SLAM
datasets.

1) Ablations experiment: We conduct ablation experi⁃
ments on various components of the UMR-SLAM model on
the Virtual KITTI2 and KITTI datasets, and report the re⁃
sults in Table 1. We compare the indicators using different
depth completion methods and also provide indicators on
whether to use loopback detection and whether to use dy⁃
namic object removal. The indicators in Table 1 are all
tested using RGBD data, and the test indicator is automatic
test equipment absolute trajectory error (ATE)[M] (RMSE).

We use different depth estimation algorithms to test the fi⁃
nal algorithm metrics. The PENet and CompletionFormer
methods both complete the depth map converted by laser,
while GA-net calculates the disparity map using binoculars
and then uses camera internal references to obtain the depth
map. We found that the depth maps obtained by GA-net can
provide better performance. We also test the impact of de⁃
ducting dynamic objects on SLAM, and the experiment
shows that the ATE index after deducting dynamic objects
would decrease by about 2.5. We also attempt to use differ⁃
▼Table 1. Ablations experiment of UMR-SLAM, where the best results
are displayed in bold

Experiment

Depth estimate

Dynamic region removal

Loop detection

Configuration
-

PENet
CompletionFormer

GA-net
No
Yes

-

Flow
Flow
and

feature

τ=0.5
τ=1.2
τ=2

K09
11.527

4.413
3.569
2.689

5.131
2.689

4.058
3.835
3.665
2.689

3.872

K10
4.775
3.366
2.748
1.414

2.351
1.414

1.412

1.414
1.414
1.420
1.427

74

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

CHEN Hao, ZHANG Kaijiong, CHEN Jun, ZHANG Ziwen, JIA Xia

Unsupervised Motion Removal for Dynamic SLAM Research Papers

ent detection schemes in loop detection, with the highest ac⁃
curacy achieved when optical flow is used together with fea⁃
tures and the feature similarity threshold is 1.2. Fig. 6
shows a trajectory comparison between our UMR-SLAM and
the DROID SLAM algorithm, and the results indicate that
our trajectories are closer to the ground truth.

We test the performance of the proposed UMR-SLAM on
sequences 09 and 10 of the KITTI dataset and all sequences
of the Virtual KITTI2 dataset, and provide camera motion
trajectories. The ATE results are shown in Table 2 below.
Compared with DROID-SLAM, our UMR-SLAM is more ac⁃
curate and robust in dynamic scenarios. We also evaluate
TUM RGBD dynamic sequences with different dynamic ra⁃
tios, and the comparison results in Table 3 indicate that
UMR-SLAM achieves competitive and even the best perfor⁃
mance compared with other classical methods such as DVO-
SLAM, ORB-SLAM2, PointCorr, DROID-SLAM. All meth⁃
ods in the table are tested using the RGBD dataset.
5 Conclusions

In this paper, we introduce UMR-SLAM, an end-to-end vi⁃
sual SLAM algorithm. We combine scene flow with deep
learning SLAM to improve SLAM accuracy in dynamic
scenes, without the need for explicit object segmentation as
supervisory information throughout the entire process. In the
backend optimization section, we propose a loop detection
scheme that combines optical flow and feature similarity,
which can improve the accuracy of loop detection. The re⁃
sults of experiments on different datasets prove that our

scheme has higher accuracy compared with the current state-
of-the-art deep learning scheme, DROID-SLAM, especially
in dynamic scenarios. Overall, the flexibility of deep learn⁃
ing and powerful feature extraction capabilities provide new
solutions to SLAM systems, which can cope with various
complex environments and tasks. However, the integration
of deep learning and SLAM still faces significant challenges
in real-time performance and computational complexity, and
further research and innovative methods need to be sought
to address them.

References
[1] ZHONG F W, WANG S, ZHANG Z Q, et al. Detect-SLAM: making ob⁃

ject detection and SLAM mutually beneficial [C]//Proceedings of IEEE

▲Figure 6. Trajectory comparison between our method and different loop detection algorithms and DROID-SLAM in KITTI sequences 09 (Left) and
10 (Right)

▼Table 2. ATE [M] metric for dynamic SLAM on the KITTI (K) and
Virtual KITTI2 (VK) datasets, where we achieve the best results. All
test results are based on RGBD

Method
DROID-SLAM

Our URM-SLAM

K09
5.453
2.689

K10
2.514
1.414

VK01
0.197
0.128

VK02
0.192
0.030

VK06
0.007
0.007

VK18
1.030
0.812

VK20
3.041
1.189

SLAM： Simultaneous localization and mapping

▼Table 3. Dynamic SLAM results of TUM dynamic sequences, mea⁃
sured as ATE [M]. The best results are displayed in bold

Method

Slightly
dynamic

Highly dynamic

Input Modes

fr2/desk-person

fr3/sitting-static

fr3/sitting-xyz

fr3/sitting-rpy

fr3/sitting-halfsphere

fr3/walking-static

fr3/walking-xyz

fr3/walking-rpy
fr3/walking-half⁃

sphere

DVO-
SLAM[38]

0.104

0.012

0.242

0.176

0.220

0.752

1.383

1.292

1.014

ORB-
SLAM2
0.006

0.008

0.010

0.025

0.025

0.408

0.722

0.805

0.723

PointCorr[39]

0.008

0.010

0.009

0.023

0.024

0.011

0.087

0.161

0.035

DROID-
SLAM
0.019

0.006

0.011

0.022

0.023

0.007

0.015

0.050

0.029

Ours

0.014

0.007

0.009

0.020

0.022

0.004

0.013

0.045

0.032
SLAM: simultaneous localization and mapping

X/m
-100 0 100 200 300

Ground_truthOurs-loop-flowOurs-loop-flow+featureOROID-SLAM

Z/m

500
400
300
200
100

0

Ground_truthOurs-loop-flowOurs-loop-flow+featureOROID-SLAM

Ground_truthOurs-loop-flowOurs-loop-flow+featureOROID-SLAM

Ground_truthOurs-loop-flowOurs-loop-flow+featureOROID-SLAM

Z/m

X/m
0 100 200 300 400 500 600 700

100
50

0
-50

SLAM: simultaneous localization and mapping

75

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

CHEN Hao, ZHANG Kaijiong, CHEN Jun, ZHANG Ziwen, JIA Xia

Research Papers Unsupervised Motion Removal for Dynamic SLAM

Winter Conference on Applications of Computer Vision (WACV). IEEE,
2018: 1001–1010. DOI: 10.1109/WACV.2018.00115

[2] WU W X, GUO L, GAO H L, et al. YOLO-SLAM: a semantic SLAM sys⁃
tem towards dynamic environment with geometric constraint [J]. Neural
computing and applications, 2022, 34(8): 6011– 6026. DOI: 10.1007/
s00521-021-06764-3

[3] YU C, LIU Z X, LIU X J, et al. DS-SLAM: a semantic visual SLAM to⁃
wards dynamic environments [C]//International Conference on Intelli⁃
gent Robots and Systems (IROS). IEEE, 2018: 1168 – 1174. DOI:
10.1109/IROS.2018.8593691

[4] LIU Y B, MIURA J. RDS-SLAM: Real-time dynamic SLAM using se⁃
mantic segmentation methods [J]. IEEE access, 2021, 9: 23772 –
23785. DOI: 10.1109/ACCESS.2021.3050617

[5] BESCOS B, FÁCIL J M, CIVERA J, et al. DynaSLAM: tracking, map⁃
ping, and inpainting in dynamic scenes [J]. IEEE robotics and automa⁃
tion letters, 2018, 3(4): 4076–4083. DOI: 10.1109/LRA.2018.2860039

[6] WANG C J, LUO B, ZHANG Y, et al. DymSLAM: 4D dynamic scene re⁃
construction based on geometrical motion segmentation [J]. IEEE robot⁃
ics and automation letters, 2021, 6(2): 550 – 557. DOI: 10.1109/
LRA.2020.3045647

[7] SUN Y X, LIU M, MENG Q H. Motion removal for reliable RGB-D
SLAM in dynamic environments [J]. Robotics and autonomous systems,
2018, 108: 115–128. DOI: 10.1016/j.robot.2018.07.002

[8] DAI W C, ZHANG Y, LI P, et al. RGB-D SLAM in dynamic environ⁃
ments using point correlations [J]. IEEE transactions on pattern analy⁃
sis and machine intelligence, 2022, 44(1): 373 – 389. DOI: 10.1109/
TPAMI.2020.3010942

[9] YUAN C F, XU Y L, ZHOU Q. PLDS-SLAM: point and line features
SLAM in dynamic environment [J]. Remote sensing, 2023, 15(7): 1893.
DOI: 10.3390/rs15071893

[10] ZHANG J, HENEIN M, MAHONY R, et al. VDO-SLAM: a visual dy⁃
namic object-aware SLAM system [EB/OL]. (2020-05-22) [2021-12-
14]. http://arxiv.org/abs/2005.11052

[11] CHO H M, KIM E. Dynamic object-aware visual odometry (VO) esti⁃
mation based on optical flow matching [J]. IEEE access, 1961, 11:
11642–11651. DOI: 10.1109/ACCESS.2023.3241961

[12] YE W C, LAN X Y, CHEN S, et al. PVO: panoptic visual odometry
[C]//Proceedings of IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2023: 9579–9589. DOI: 10.1109/
CVPR52729.2023.00924

[13] SHEN S H, CAI Y L, WANG W S, et al. DytanVO: joint refinement of
visual odometry and motion segmentation in dynamic environments
[C]//International Conference on Robotics and Automation (ICRA).
IEEE, 2023: 4048–4055. DOI: 10.1109/ICRA48891.2023.10161306

[14] DOSOVITSKIY A, FISCHER P, ILG E, et al. FlowNet: learning opti⁃
cal flow with convolutional networks [C]//International Conference on
Computer Vision (ICCV). IEEE, 2015: 2758 – 2766. DOI: 10.1109/
ICCV.2015.316

[15] ILG E, MAYER N, SAIKIA T, et al. FlowNet 2.0: evolution of optical
flow estimation with deep networks [C]//Conference on Computer Vi⁃
sion and Pattern Recognition (CVPR). IEEE, 2017: 1647–1655. DOI:
10.1109/CVPR.2017.179

[16] JONSCHKOWSKI R, STONE A, BARRON J T, et al. What matters in
unsupervised optical flow [M]//Lecture notes in computer science.
Cham: Springer International Publishing, 2020: 557 – 572. DOI:
10.1007/978-3-030-58536-5_33

[17] RANJAN A, BLACK M J. Optical flow estimation using a spatial pyra⁃
mid network [C]//Conference on Computer Vision and Pattern Recogni⁃
tion (CVPR). IEEE, 2017: 2720 – 2729. DOI: 10.1109/
CVPR.2017.291

[18] SUN D Q, YANG X D, LIU M Y, et al. PWC-net: CNNs for optical flow
using pyramid, warping, and cost volume [C]//Conference on Computer
Vision and Pattern Recognition. IEEE, 2018: 8934 – 8943. DOI:
10.1109/CVPR.2018.00931

[19] TEED Z, DENG J. RAFT: recurrent all-pairs field transforms for opti⁃
cal flow [M]//lecture notes in computer science. Cham: Springer Inter⁃
national Publishing, 2020: 402 – 419. DOI: 10.1007/978-3-030-
58536-5_24

[20] TEED Z, DENG J. RAFT-3D: Scene Flow using Rigid-Motion Embed⁃
dings [C]//Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2021: 8371 – 8380. DOI: 10.1109/
CVPR46437.2021.00827

[21] REN Z L, GALLO O, SUN D Q, et al. A fusion approach for multi-
frame optical flow estimation [C]//IEEE Winter Conference on Appli⁃
cations of Computer Vision (WACV). IEEE, 2019: 2077–2086. DOI:
10.1109/WACV.2019.00225

[22] SHI H, ZHOU Y F, YANG K L, et al. CSFlow: learning optical flow
via cross strip correlation for autonomous driving [C]//Intelligent Ve⁃
hicles Symposium (IV). IEEE, 2022: 1851 – 1858. DOI: 10.1109/
IV51971.2022.9827341

[23] GARREPALLI R, JEONG J, RAVINDRAN R C, et al. DIFT: dynamic
iterative field transforms for memory efficient optical flow [C]//Confer⁃
ence on Computer Vision and Pattern Recognition Workshops
(CVPRW). IEEE, 2023: 2220 – 2229. DOI: 10.1109/
CVPRW59228.2023.00216

[24] HUI T W, TANG X O, LOY C C. A lightweight optical flow CNN: re⁃
visiting data fidelity and regularization [J]. IEEE transactions on pat⁃
tern analysis and machine intelligence, 2021, 43(8): 2555 – 2569.
DOI: 10.1109/TPAMI.2020.2976928

[25] GALVEZ-LÓPEZ D, TARDOS J D. Bags of binary words for fast place
recognition in image sequences [J]. IEEE transactions on robotics,
2012, 28(5): 1188–1197. DOI: 10.1109/TRO.2012.2197158

[26] SUENDERHAUF N, SHIRAZI S, JACOBSON A, et al. Place recogni⁃
tion with ConvNet landmarks: viewpoint-robust, condition-robust,
training-free [C]//Proceedings of Robotics: Science and Systems XI.
Robotics: Science and Systems Foundation, 2015: 1 – 10. DOI:
10.15607/rss.2015.xi.022

[27] GAO X, ZHANG T. Unsupervised learning to detect loops using deep
neural networks for visual SLAM system [J]. Autonomous robots,
2017, 41(1): 1–18. DOI: 10.1007/s10514-015-9516-2

[28] MERRILL N, HUANG G Q. Lightweight unsupervised deep loop clo⁃
sure [EB/OL]. (2018-05-24) [2023-10-10]. http://arxiv. org/abs/
1805.07703

[29] MEMON A R, WANG H S, HUSSAIN A. Loop closure detection using
supervised and unsupervised deep neural networks for monocular
SLAM systems [J]. Robotics and autonomous systems, 2020, 126:
103470. DOI: 10.1016/j.robot.2020.103470

[30] TEED Z, DENG J. DROID-SLAM: deep visual SLAM for monocular,
stereo, and RGB-D cameras [J]. Advances in neural information pro⁃
cessing systems, 2021, 34: 16558–16569

[31] ZHANG Y M, GUO X D, POGGI M, et al. CompletionFormer: depth
completion with convolutions and vision transformers [C]//Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023:
18527–18536. DOI: 10.1109/CVPR52729.2023.01777

[32] ZHANG F H, PRISACARIU V, YANG R G, et al. GA-net: guided ag⁃
gregation net for end-to-end stereo matching [C]//Proceedings of IEEE/
CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2019: 185–194. DOI: 10.1109/CVPR.2019.00027

[33] CABON Y, MURRAY N, HUMENBERGER M. Virtual KITTI 2 [EB/
OL]. (2020-01-29) [2023-10-10]. http://arxiv.org/abs/2001.10773

[34] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the
KITTI dataset [J]. The international journal of robotics research, 2013,
32(11): 1231–1237. DOI: 10.1177/0278364913491297

[35] SCHUBERT D, GOLL T, DEMMEL N, et al. The TUM VI benchmark
for evaluating visual-inertial odometry [C]//International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2018: 1680–1687.
DOI: 10.1109/IROS.2018.8593419

[36] MUR-ARTAL R, TARDÓS J D. ORB-SLAM2: An open-source SLAM

76

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

CHEN Hao, ZHANG Kaijiong, CHEN Jun, ZHANG Ziwen, JIA Xia

Unsupervised Motion Removal for Dynamic SLAM Research Papers

system for monocular, stereo, and RGB-D cameras [J]. IEEE transac⁃
tions on robotics, 2017, 33(5): 1255 – 1262. DOI: 10.1109/
TRO.2017.2705103

[37] BESCOS B, FÁCIL J M, CIVERA J, et al. DynaSLAM: tracking, map⁃
ping, and inpainting in dynamic scenes [J]. IEEE robotics and automa⁃
tion letters, 2018, 3(4): 4076 – 4083. DOI: 10.1109/
LRA.2018.2860039

[38] KERL C, STURM J, CREMERS D. Robust odometry estimation for
RGB-D cameras [C]//IEEE International Conference on Robotics and
Automation. IEEE, 2013: 3748 – 3754. DOI: 10.1109/
ICRA.2013.6631104

[39] DAI W C, ZHANG Y, LI P, et al. RGB-D SLAM in dynamic environ⁃
ments using point correlations [J]. IEEE transactions on pattern analy⁃
sis and machine intelligence, 2022, 44(1): 373– 389. DOI: 10.1109/
TPAMI.2020.3010942

[40] YE W C, YU X Y, LAN X Y, et al. DeFlowSLAM: self-supervised
scene motion decomposition for dynamic dense SLAM [EB/OL]. [2023-
10-10]. https://arxiv.org/pdf/2207.08794v2

Biographies
CHEN Hao (chen. hao16@zte. com. cn) received his BS and MS degrees in
control theory and control engineering from Harbin Engineering University,
China in 2018 and 2020. He has been engaged in deep learning technolo⁃
gies in ZTE Corporation since his graduation. His research interests include
digital humans, SLAM, and image recognition.

ZHANG Kaijiong received his MS degree from Shanghai Jiao Tong Univer⁃
sity, China in 2020. He is currently an algorithm engineer with ZTE Corpora⁃
tion. His research interests include computer vision, image/video processing
and artificial intelligence.

CHEN Jun received his master’s degree in aerospace science and technolo⁃
gy from Nanjing University of Aeronautics and Astronautics, China. He has
been engaged in the R&D of computer graphics, computer vision, and cloud
computing for more than 10 years in ZTE Corporation, and has accumulated
rich experience in solution and engineering.

ZHANG Ziwen received his bachelor’s degree in instrument science and
technology and master’s degree in instrument engineering from Harbin Insti⁃
tute of Technology, China in 2018 and 2020 respectively. After graduation,
he worked at ZTE Corporation as a computer vision algorithm engineer. He
has been engaged in algorithm research, design, improvement and end-to-
end deployment optimization in the fields of face detection and recognition,
image matching, SLAM, digital human generation, and portrait stylization
migration for a long time, and has accumulated rich experience in these
fields.

JIA Xia received her BS and MS degrees in control theory and control engi⁃
neering from Taiyuan University of Technology, China, and Dalian Universi⁃
ty of Technology, China in 1995 and 2001, respectively. She joined ZTE Cor⁃
poration in 2001 and worked in the State Key Laboratory of Mobile Network
and Mobile Multimedia Technology. Her main research interests include
deep learning techniques, face detection and recognition, Re-ID, and activi⁃
ty detection and recognition.

77

